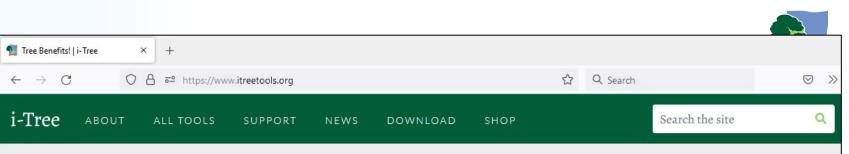
Assessing ecosystem services with i-Tree Eco: methods, approaches, and models

Plan for today...

- Introduction to i-Tree
- The core ecosystem services
 - Carbon
 Air pollution
 Stormwater
 Energy

- ➤ Free tools
- Technical support
- Continuously improved

www.itreetools.org


Arbor Day Foundation

A new version of i-Tree Eco using a new database back end has been released! Please email if you encounter issues.

i-Tree delivers current, peer-reviewed tree benefits estimation science from the USDA Forest Service to all types of users with free tools and support.

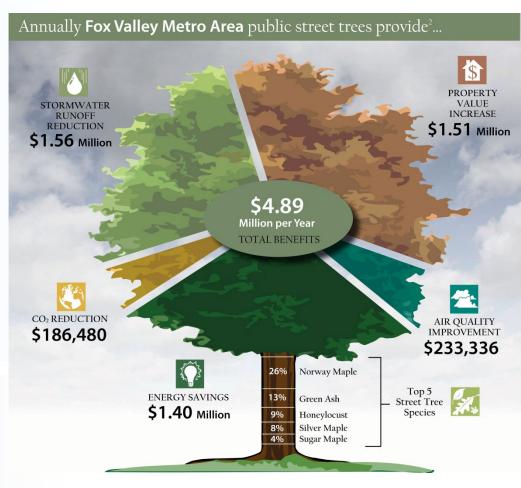
The trees around you: remove hazardous pollutants from the air you breathe, absorb carbon dioxide from

Tools for assessing individual trees

MyTree

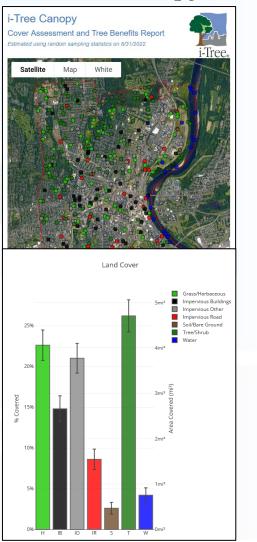
Are you new to i-Tree? Start with our EASIEST tool! MyTree helps you quickly assess **individual trees** with a minimum of fuss.

via your web browser or Android | Apple devices

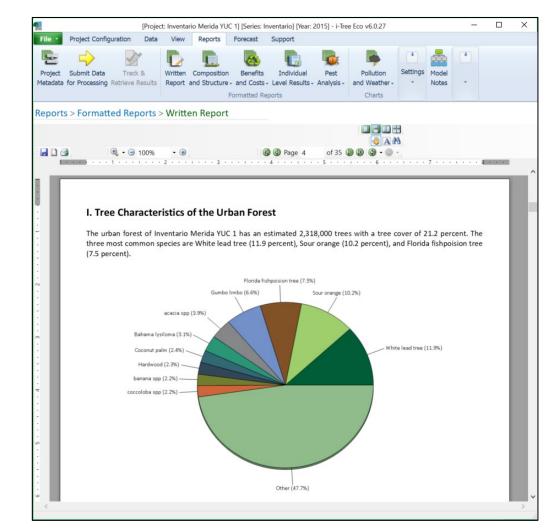

i-Tree Design

A full-featured web tool with expanded building interactions and forecasting for estimating the benefits of **individual trees**. *via your web browser*

i-Tree: Demonstrating Tree Value

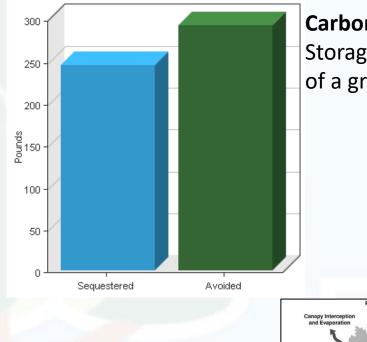


The 2022 i-Tree International Tools

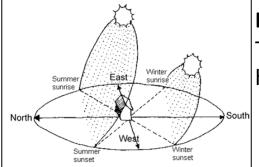


MyTree 2 **MyTree Benefits** Over 20 years. Horse chestnut, (Aesculus hippocastanum) Serving Size: 45.72 cm. diameter Condition: Good Expected over 20 years: \$381.59 **Carbon Dioxide Sequestration** \$78.33 1.527.62 kg CO2 equivalent of carbon1 Storm Water Mitigation \$0.04 16.28 L Runoff Avoided Rainfall Intercepted 368.04 L Air Pollution Removal \$107.17 Carbon Monoxide 0.28 g 11.95 g Ozone Nitrogen Dioxide 1.55 g Sulfur Dioxide 0.76 g 0.61 g PM_{2.5} Energy Usage² \$179.89 Electricity Savings (A/C) 2.376.13 kWh -12.9 MMBtu Fuel Savings (natural gas, oil) Avoided Energy Emissions \$16.20 Carbon Dioxide 282.03 kg

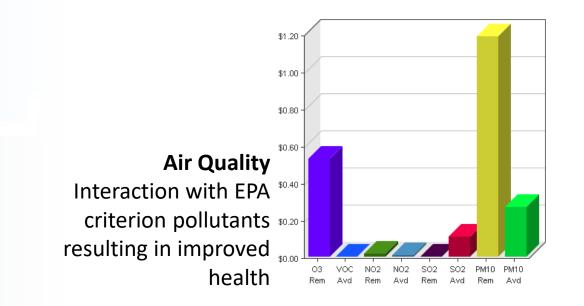
i-Tree Canopy

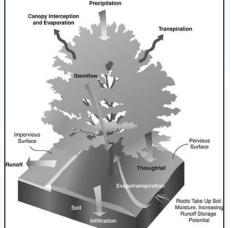


i-Tree Eco



Tree Benefits 101: What does i-Tree Estimate and Why?

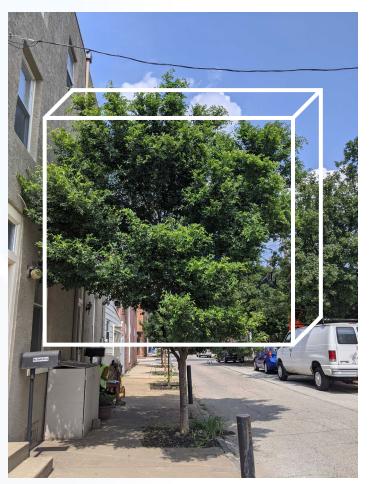




Carbon dioxide Storage and sequestration of a greenhouse gas

Energy Tree impacts on heating and cooling

Stormwater Avoided runoff, evaporation, transpiration


Carbon Step 1: Measure tree structure

Tree species = Shumard oak dbh = 18.3 cm

Crown Light Exposure = 4

Crown dieback = 15% Total tree height = 4.0 m

Carbon Step 1: Measure tree structure

Required:

Tree species = Shumard oak d.b.h = 18.3 cm

Default: Crown Light Exposure = 3

Default: Crown dieback = 17% **Modeled:** Total tree height = 3.0 m

Carbon Step 2: Current carbon stored in a tree

Biomass Equations

Table 27.—Dry weight biomass equations, by species, used in i-Tree. x = d.b.h. in cm unless otherwise noted; Y= total tree dry weight biomass in kg unless otherwise noted. DHT: x = d.b.h.2 (cm2) x total tree height (m); AGB = aboveground dry weight biomass. These equations were derived from various sources (see Nowak 1994b, Nowak et al. 2002b, and GlobAllomeTree 2017).

Species	Equation form	Α	В	С	D	E	F	G	x	Y
Picea abies	Y=A+Bx+C ² X+D ³ x+E ⁴ x+F ⁵ x	10	-1.3638	0.4216	0.0041	-3E-05	1E-07			
Picea glauca	$Y = e^{(A + B * Ln(X) + (C/2))}$	-1.73798	2.22809	0.05189						
Picea rubens	$Y=A+Bx+C^2X+D^3x+E^4x+F^5x+G^6x$	0.25	-0.3531	0.2983	0.0041	-4E-05	3E-07	-7E-10		
Picea spp.	$Y = e^{(A + B * Ln(X) + (C/2))}$	-1.87821	2.25867	0.04823						
Pinus banksiana	Y=A+Bx+C ² X+D ³ x+E ⁴ x+F ⁵ x+G ⁶ x	0.21	-0.1925	0.1914	0.0051	-5E-05	3E-07	-9E-10		
Pinus caribaea	Y=Ax ^B	0.07035	2.56							AGB (kg)
Pinus contorta	Y=Ax ^B	0.11886	2.2333							

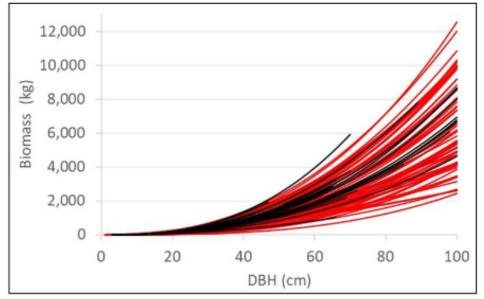


Figure 12.—Estimates of dry weight biomass for numerous species using various equations across a large diameter range. Red lines are i-Tree equation estimates (appendix 10); black lines are estimates from equations from Jenkins et al. (2003). Carbon estimates are one-half of dry weight biomass.

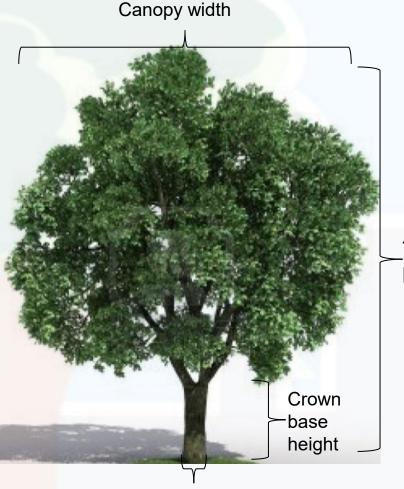
- Estimate tree dry weight biomass from existing species models
- Equations rely on species, dbh, and in some cases height
- Carbon currently stored in the tree is calculated at ¹/₂ of biomass

Understanding i-Tree document https://www.fs.usda.gov/treesearch/pubs/63636

Carbon Step 3: Estimate annual carbon sequestration

Estimate diameter growth

- Average rate for open grown trees = 0.84 cm/yr
- Adjust for growing season length
- Adjust for species (fast, medium, slow)
- Adjust for available sun based on crown light exposure
- Adjust for tree health based on dieback


Estimate carbon stored after growth

carbon seq. = carbon stored year 2 – carbon stored in year 1

Monetary value from the <u>US Social Cost of Carbon</u>

Air Pollution Step 1: Estimate tree structure Leaf surface area

DBH

1. With at least dbh and species we can predict crown size measurements

Red maple height = $e^{(2.6393 + (\ln(DBH) * 0.5613))}$

46 cm red maple has an estimate height of 21.3 m

2. With crown size measurements we can estimate crown volume

Tree height

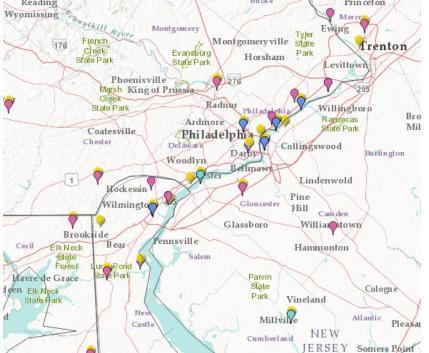
3. With volume we can estimate leaf surface area

In (leaf area) = -4.33 + 0.29 * ht + +0.7312 * crown diam + 5.72 * species leaf density + -0.015 * crown surface area Leaf surface area for our 46 cm red maple = **543 sq m**

Air Pollution Step 2: Estimate tree function Gas exchange - NO₂, O₃, SO₂ Deposition - particulate matter (PM2.5) and CO

Local hourly weather data:

- windspeed
- sunlight
- rainfall
- humidity


Local hourly pollution data

Tree data

- Leaf area
- Leaf on/off dates
- Deciduous vs. evergreen

i-Tree

Air Pollution Step 3: Estimating value pollution removal value

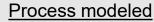
		PM2.		
		Incidence	Value	
€ P		(Reduction/yr)	(\$/yr)	
	Acute Bronchitis	0.206	18.12	lata
Benefits N	Acute Myocardial Infarction	0.051	4.543.25	ion
	Acute Respiratory Symptoms	112.666	11,043.29	
	Asthma Exacerbation	88.133	7,164.56	y age
	Chronic Bronchitis	0.086	24,042.76	
	Emergency Room Visits	0.134	55.73	ollution
	Hospital Admissions			
	Hospital Admissions, Cardiovascular	0.030	1,164.32	
	Hospital Admissions, Respiratory	0.026	821.49	
An air quality reduces the nu hospital admis 100	Lower Respiratory Symptoms	2.486	129.08	
	Mortality	0.285	2,214,131.18	
	School Loss Days			
	Upper Respiratory Symptoms	2.048	91.95	
	Work Loss Days	19.238	3,298.60	
	Total	225.389	2,266,504.33	

Stormwater

Step 1: Tree/forest structure measurements identical to air pollution to estimate total leaf area

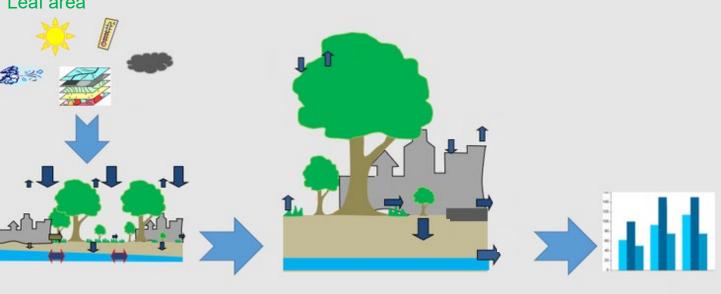
Step 2: Process-based modeling at an hourly time step simulating all hydrology related benefits with and without vegetation

Step 3: Parse benefits to individual trees based on relative leaf area



Weather a)

Precipitation b


Assumed cover c)

- Average topography d)
- Average soil e)
- Leaf area

- Canopy Interception f) a)
- Depression storage b)
- C) Impervious runoff
- d) Infiltration
- e) Soil moisture

- Pervious runoff
- Surface evaporation d)
- h) Veq. evaporation
- **Evapo-transpiration**

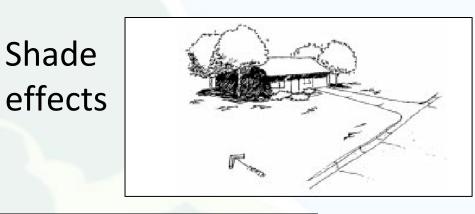
Energy Step 1: Measure tree structure (within 18 m of house)

Required:

Tree species = Red maple Total height = 12 m (can be derived from dbh)

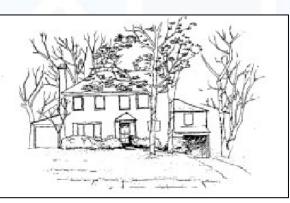
Required or Default:

Crown dieback = 5% Crown missing = 25%



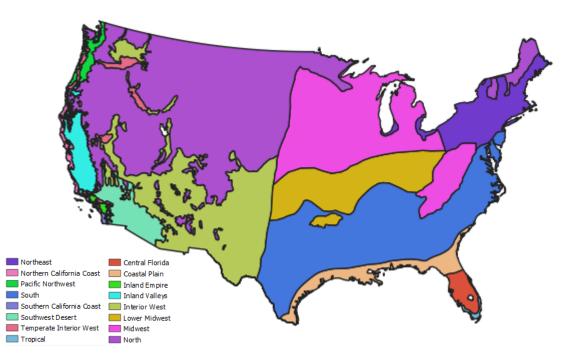
Required: Distance and direction to building Distance to building = 7.4m

Direction to building = 14 degrees



Energy Step 2: Estimates of function

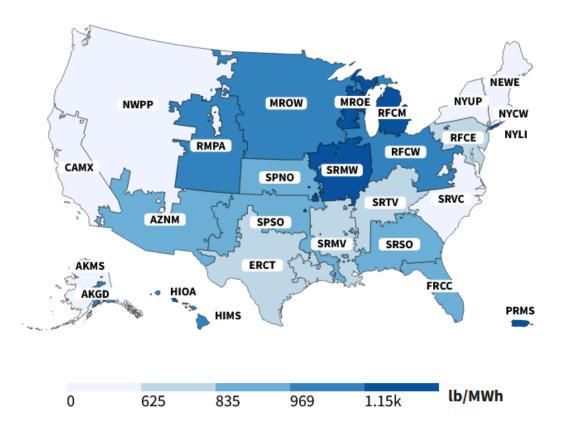
Windbreak effects


Climate effects

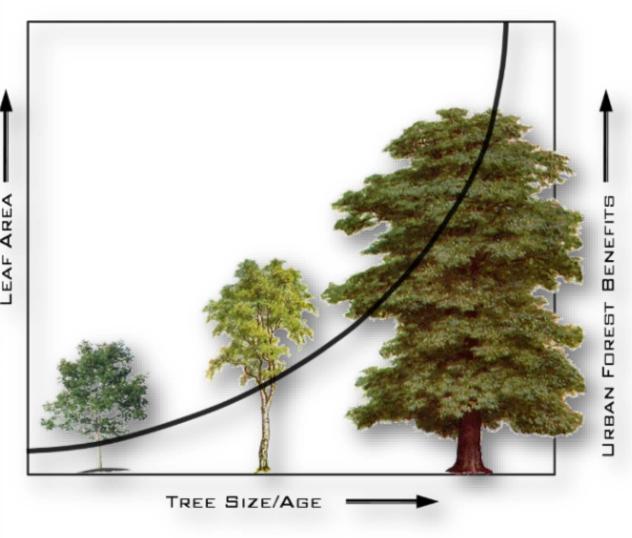
Influenced by

- building vintage
- ➤ tree size
- deciduous vs evergreen
- canopy cover
- distance and direction to building

Energy Step 3: Estimate benefits


- Cooling kwh
- Heating kwh and therms
- Carbon avoided
- Pollution avoided

Billing Details		Page 2
Previous Balance	\$145.80	
Payment Received Jun 27, 2011 - Thank You!	-\$145.80	
Balance as of Jul 6, 2011		\$0.00
Charges for - Electric Supplier 1234 Generation & Transmission Charges General Service Rate: ESUP for Jun 3 - Jul 5 Energy Charge 1429 Kwh@ \$.0949/Kwh Total Electric Supplier 1234 Charges	135.61	\$135.61
Charges for - PPL Electric Utilities Residential Rate: RS for Jun 3 - Jul 5 Distribution Charge: Customer Charge 1,429 kWh at 3.32300000¢ per kWh PA Tax Adj Surcharge at -0.27600000%	8.75 47.49 -0.16	
Total PPL Electric Utilities Charges		\$56.08
Amount Due By Jul 27, 2011		\$191.69
Account Balance		\$191.69

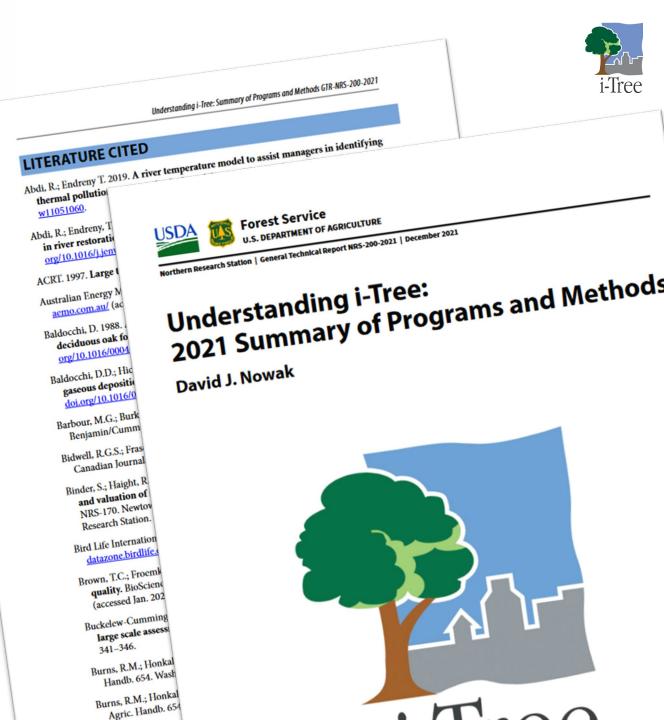

State level energy mixes and pollution rates per Therm and kwh from <u>eGRID</u>

CO₂ total output emission rate (lb/MWh) by eGRID subregion, 2020

Key points about the science of i-Tree

- Based on research from dozens of different researchers and over 100 publications
- Research is continuously updated
- Estimates are generally conservative
- International estimates often begin based on US conditions, but customization is possible and recommended

For more information...


Understanding i-Tree

i-Tree Methods webpage

USFS Treesearch archives

www.itreetools.org

info@itreetools.org jason.henning@davey.com

